已知数列an满足a1+a2+…+an=n2(n∈N*).(1)求数列an的通项公式;(2)对任意给定的k∈N*,是否存在p
(1)当n=1时,a1=1;
当n≥2,n∈N*时,a1+a2++an-1=(n-1)2,
所以an=n2-(n-1)2=2n-1;
综上所述,an=2n-1(n∈N*).(3分)
(2)当k=1时,若存在p,r使
1 |
ak |
1 |
ap |
1 |
ar |
1 |
ar |
2 |
ap |
1 |
ak |
3?2p |
2p?1 |
因为p≥2,所以ar<0,与数列an为正数相矛盾,因此,当k=1时不存在;(5分)
当k≥2时,设ak=x,ap=y,ar=z,则
1 |
x |
1 |
z |
2 |
y |
xy |
2x?y |
令y=2x-1,得z=xy=x(2x-1),此时ak=x=2k-1,ap=y=2x-1=2(2k-1)-1,
所以p=2k-1,ar=z=(2k-1)(4k-3)=2(4k2-5k+2)-1,所以r=4k2-5k+2;
综上所述,当k=1时,不存在p,r;
当k≥2时,存在p=2k-1,r=4k2-5k+2满足题设.(10分)
(3)作如下构造:an1=(2k+3)2,?an2=(2k+3)(2k+5),an3=(2k+5)2,其中k∈N*,
它们依次为数列an中的第2k2+6k+5项,第2k2+8k+8项,第2k2+10k+13项,(12分)
显然它们成等比数列,且an1<an2<an3,an1+an2>an3,所以它们能组成三角形.
由k∈N*的任意性,这样的三角形有无穷多个.(14分)
下面用反证法证明其中任意两个三角形A1B1C1和A2B2C2不相似:
若三角形A1B1C1和A2B2C2相似,且k1≠k2,则
(2k1+3)(2k1+5) |
(2k1+3)2 |
(2k2+3)(2k2+5) |
(2k2+3)2 |
整理得
2已赞过已踩过你对这个回答的评价是?评论收起 // 高质or满意or特型or推荐答案打点时间 window.iPerformance && window.iPerformance.mark('c_best', +new Date); 推荐律师服务:若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询其他类似问题2023-05-066.已知数列{an}满足 an+1=2an+2,a1=1, 则此数列的通项公式为-|||-A.an?2016-12-01已知数列{an}满足a1=1,a1+a2+……an-1-an=-1(n≥2且n∈N+),(1)求数列{an}的通项公式;242011-03-20已知数列{An}满足:a1=1,a2=2,a(n+2)=[an+a(n+1)]/2, 1,求通项公式602011-05-17已知数列{an}满足a1=1,a2=2,an+2=[an+a(n+1)]/2,n∈N*,求{an}的通项公式312020-05-02已知数列{an}满足a1=1,a2=2,an+2=[an+a(n+1)]/2,n∈N*,求{an}的通项公式62011-09-18在数列{an}中,a1=1,对所有的n≥2(n∈N)都有a1·a2……an=n^2,则{an}的通项公式?求具体过程82014-11-23设数列{an}满足a1=2,a2+a4=8,且对任意的n∈N*,都有an+an+2=2an+1(Ⅰ)求数列{an}的通项公式;(Ⅱ)72012-03-07已知数列an满足,a1=1/2,a1+a2+a3+......+an=(n^2)an,通项公式an=为你推荐:特别推荐 F.context('cmsRight', [ { 'url':'/d01373f082025aaf511aa256e9edab64034f1a07?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_450%2Ch_600%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto', 'contractId':'A24KA00562', } ]); 癌症的治疗费用为何越来越高?“网络厕所”会造成什么影响?电动车多次降价,品质是否有保障?华强北的二手手机是否靠谱?为你推荐 F.context('recBrand',[{"img":"\/86d6277f9e2f07083523f69dfb24b899a901f20d?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_450%2Ch_600%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto","url":"/hm.js?6859ce5aaf00fb00387e6434e4fcc925"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); window.tt = 1724208865; |