∫ [L] x 2yzds,其中为折线,其中A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2);

∫[l]x^2yzds=∫[(0,0,0)->;(0,0,2)]x^2yzds+∫[(0,0,2)->;(1,0,2)] x^2yzds

+∫[(1,0,2)->(1,3,2)] x^2yzds

∫[(0,0,0)-& gt;(0,0,2)]x^2yzds=∫[0->;2] 0dz=0

∫[(0,0,2)->;(1,0,2)]x^2yzds=∫[0->;1] x^2 * 0 *2dx=0

∫[(1,0,2)->(1,3,2)]x^2yzds=∫[0->;3]1^2 * y * 2dy = y^2 |[0-& gt;3] = 9

∫[L]x^2yzds=0+0+9=9