(2013?安阳模拟)如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线

证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.

又∵AD⊥BC,∴AD∥BE.

可得△BFC∽△DGC,△FEC∽△GAC.

BF
DG
CF
CG
EF
AG
CF
CG
,得
BF
DG
EF
AG

∵G是AD的中点,即DG=AG.

∴BF=EF.

(2)连接AO,AB.

∵BC是圆O的直径,∴∠BAC=90°.

由(1)得:在Rt△BAE中,F是斜边BE的中点,

∴AF=FB=EF,可得∠FBA=∠FAB.

又∵OA=OB,∴∠ABO=∠BAO.

∵BE是圆O的切线,

∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,

∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.