讲下这题的思路...

这个游戏就是所谓的威佐夫博弈(Wythoff Game),很有意思。

用一个二维数组来表示玩家将面临的局面,即a[i][j]表示两堆石头分别有i个和j个,如果a[i][j]是必败局面的话,那么——这个点的右侧所有点a[i][k](k>j)都是必胜点,因为可以通过拿走第二堆的k-j个石子令对方面临必败局面a[i][j];这个点的下侧所有点a[k][j](k>i)都是必胜点,因为可以通过拿走第二堆的k-i个石子令对方面临必败局面a[i][j];这个点的右下方45度所有点a[i+k][j+k](k>0)都是必胜点,因为可以通过同时拿走两堆的k个石子令对方面临必败局面a[i][j]。这样如果在二维数组a[i][j]处标记”X”表示必败的话,在上面提到的三类点的位置都可以标记”O”表示必胜了,做完这项工作后,再挑选如今距离原点最近的未被标记的点,它一定是下一个必败点——因为它无法通过游戏规则移动到一个必败点,并且规则规定的动作都是朝向原点移动的,而它是距离原点最近的未被标记的点,因此它只能移动到一个必胜点从而让对方获胜,所以该点一定是下一个必败点。有了新必败点后就可以重复上述工作,直到找出问题范围内的所有必败点。

然而这样的模拟工作是不被允许的,因为数据量太大了,因此这道题要求的是给定两个数i,j,有办法立刻判断a[i][j]是不是必败点,在O(1)时间给出解答。

我试图找到必败点的规律,但是没成功。因为这个问题够简洁,所以我坚信一定有简单规律的,因此在考察了很大数据量仍然没有发现规律后。今天上网一搜才知道规律果然够简单够经典,竟然是“黄金分割”,以下内容来自对网上内容的总结:

前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。

判断一个点是不是必败点的公式与黄金分割有关,为:

m(k) = k * (1 + sqrt(5))/2

n(k) = m(k) + k

至于为什么如此,我就不知道了,也没有查到。