如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上(与点A,C不重合),点Q在BC上.(1)△CPQ的

(1)∵AB=5,BC=3,AC=4,

∴BC2+AC2=AB2,

∴∠C=90°,

设AB边上的高为h,

1
2
×3×4=
1
2
×5h,

∴h=

12
5

∵PQ∥AB,

∴△CQP∽△CBA,

CQ
CB
=
CP
CA
=
PQ
AB
=
3
5
12
5
=
1
4

∵AB=5,BC=3,AC=4,

∴CQ=

3
4
,CP=1,PQ=
5
4

∴△CPQ的周长CQ+CP+PQ=

3
4
+1+
5
4
=3;

(2)∵△CPQ的周长与四边形PABQ的周长相等,

∴CP+CQ+PQ=BQ+PQ+PA+AB=

1
2
(AB+BC+AC)=6,

∵AB=5,BC=3,AC=4,

∴CP+CQ=3-CQ+4-CP+5,

2CQ+2CP=12,

CQ+CP=6,

∵PQ∥AB,

∴△PQC∽△ABC.

CQ
CB
=
CP
AC

6?CP
3
=
CP
4

解得:CP=

24
7