48的因数

48的因数有1,2,3,4,6,8,12,16,24,48。

48的因数***有10个:分别是1,2,3,4,6,8,12,16,24,48。因数是指整数除以整数的商正好是整数而没有余数,例如:48÷1=48。具体方法是:要找一个整数的因数,先把这个整数分解质因数,然后分别列出每种因数的个数,比如一个整数有n个质因数,每个质因数重复k1,k2...kn次,那么因数的个数=(k1+1)(k2+1)...(kn+1)(个)。求48 的所有因数,先把48分解质因数,48=2x2x2x2x3,即48可以分解成4个质因数2,和1个质因数3相乘,那么48 的因数个数就有(4+1)x(1+1)=10(个)了。常用的方法找48的因数:即1,48,2,24,3,16,4,12,6,8,也就是48***有10个因数。

因数简介:

因数,数学名词。假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,不考虑0。若一整数能除尽另一整数,则前者称为后者的因数。如1、3、5、15都是15的因数。也称为因子。在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得,则称B是A的因数,记作B|A。但是也有的作者不要求。例如: 2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。一般而言,整数A乘以整数B得到整数C,整数A与整数B都称做整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。

因数相关性质:

1、整除:若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作b|a。

2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。

3、合数:除了1和它本身还有其它正因数。

4、1只有正因数1,所以它既不是质数也不是合数。

5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。

6、公因数只有1的两个非零自然数,叫做互质数。

7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。

8、所有不为零的整数都是0的因数。

9、2是最小的质数。

10、4是最小的合数。

公因数简介:

两个或多个整数公有的因数叫做它们的公因数。两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。推论:1是任意个数的整数之公因数。两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。

短除法简介:

短除法是求最大公因数的一种方法,也可用来求最小公倍数。求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。后来,使用分解质因数法来分别分解两个数的因数,再进行运算。之后又演变为短除法。短除法运算方法是先用一个除数除以能被它除尽的一个质数,以此类推,除到商是质数为止。