逻辑思考题
逻辑问题
“阿基里斯追不上乌龟”是古希腊的一个哲学故事。阿基里斯是当时的一个善于长跑的人。阿基里斯当然能够追上乌龟,用方程可以来解决。假设阿基里斯的速度为a,乌龟的速度为b,阿基里斯开始追赶乌龟的时候,乌龟在阿基里斯的前面,假设这段距离为c,请问需要多少时间阿基里斯可以追上乌龟。设所需要的时间为x,那么ax=bx+c, x=c/(a-b).由于a b c都是常数,x当然可以求得一个解。当然如果a b 的差如果很小,那么解可以趋于无穷大。
但是在这个哲学故事里面和这个问题却毫无关系,在这个故事里面说阿基里斯追不上乌龟是说,不论阿基里斯比乌龟跑得有多快,他都追不上。
但是当我们引入无限分割的问题时,马上出现了变化。
如果我们故意这样思考:阿基里斯在追赶乌龟的过程中,或者追上乌龟之前,必须先走完乌龟当前已经超过他的距离。(这不是假设,而是确实应该的事情。但是这种思维方式却是假定的,你可以用这样的思维方式,也可以不用。一旦用了这样的思维方式,就会使思维过程没有完结,从而使得阿基里斯追不上乌龟。)按照这种思维方式,当阿基里斯走完乌龟超过他的距离后,乌龟在这段时间里也前进了一段距离,虽然愈来愈小。每次这样的思维,结果都是一样的,在这个过程中,逻辑并没有犯错。我们可以把这样的思考无限循环下去,而且乌龟继续前进的距离永远不会是零,虽然趋向无穷小,那么可以用形式逻辑的方法,推出这样的结论:阿基里斯永远追不上乌龟。
以上的问题怎么解决呢?
或许可以用微积分的方法。阿基里斯追不上乌龟的故事中,实际涉及到:对有限空间在有限时间内以无限速度作无限分割。这个分割实际就是无穷小,我们完全可以规定这个无穷小等于0,因此只要出现无穷小的现象或情况,我们就可以认为0要出现,事物的变化就有确定性。
或许我们和古人的区别在于,我们认为无穷小是0,而古人认为无穷小是永远不能等于0。古人他们太认真了,他们会想,无穷小仅仅是无穷小,怎么会是0呢,相反它永远也不会是0。实际上无穷小是一个完整的概念,一旦把它有限化,那么它就不是零了。要找到0与非0之间的界限,实际上还是用有限的方式,去思维无限的对象,或者把有限的事物予以无限化。