英雄联盟如何指挥团战?

英雄联盟如何指挥团战?AI帮你做决策

英雄联盟是一个需要默契团队配合的多人对战游戏。在瞬息万变的战斗中,如何做出正确的决策非常重要。最近,数据分析师 Philip Osborne 提出了一种利用人工智能技术提升英雄联盟中团队决策水平的方法,并将其开源。该方法不仅参考了大量真实游戏的统计结果,也将当前玩家的偏好计算在内。

该项目由三部分组成,旨在将 MOBA 游戏《英雄联盟》的对战建模为马尔科夫决策过程,然后应用强化学习找到最佳决策,该决策还考虑到玩家的偏好,并超越了简单的「计分板」统计。

作者在 Kaggle 中上传了模型的每个部分,以便大家更好地理解数据的处理过程与模型结构:

第一部分:/osbornep/lol-ai-model-part-1-initial-eda-and-first-mdp第二部分:/osbornep/lol-ai-model-part-2-redesign-mdp-with-gold-diff第三部分:/osbornep/lol-ai-model-part-3-final-output

目前这个项目还在进行当中,我们希望展示复杂的机器学习方法可以在游戏中做什么。该游戏的分数不只是简单的「计分板」统计结果,如下图所示:

动机和目标

英雄联盟是一款团队竞技电子游戏,每局游戏有两个团队(每队五人),为补兵与杀人展开竞争。获得优势会使玩家变得比对手更强大(获得更好的装备,升级更快),一方优势不断增加的话,获胜的几率也会变大。因此,后续的打法和游戏走向依赖于之前的打法和战况,最后一方将摧毁另一方的基地,从而赢得比赛。

像这种根据前情建模的情况并不新鲜;多年来,研究人员一直在考虑如何将这种方法应用于篮球等运动中(mendation》,该论文阐释了如何更加详细地将反馈映射出来。

反馈的收集方式决定了我们的模型能有多成功。依我之见,我们这么做的最终目标是为玩家的下一步决策提供最佳实时建议。如此一来,玩家就能从根据比赛数据算出的几条最佳决策(根据获胜情况排序)中做出选择。可以在多个游戏中跟踪该玩家的选择,以进一步了解和理解该玩家的偏好。这也意味着,我们不仅可以追踪决策的结果,还能预测该玩家的意图(例如,该玩家试图拆塔结果却被杀了),甚至还能为更高级的分析提供信息。

当然,这样的想法可能造成团队成员意见不符,也可能让游戏变得没那么令人兴奋。但我认为这样的想法可能对低水平或者常规水平的玩家有益,因为这种水平的游戏玩家难以清楚的沟通游戏决策。这也可能帮助识别「毒瘤」玩家,因为团队指望通过投票系统来统一意见,然后就能看出「毒瘤」玩家是不是一直不遵循团队计划,忽略队友。

实时游戏环境中的模型推荐投票系统示例