凯利公式简单理解
凯利公式是:f* = (bp - q) / b,f* = 投注金额占总资金的比例,p = 获胜的概率,q = 失败的概率,q = 1-p,b = 赔率。
摘要:凯利公式是f* = (bp - q) / b,f* = 投注金额占总资金的比例,p = 获胜的概率,q = 失败的概率,q = 1-p,b = 赔率。f* = (bp - q) / b
其中,f* = 投注金额占总资金的比例
p = 获胜的概率
q = 失败的概率,q = 1-p
b = 赔率,例如在轮盘赌中押单个数字,b = 35,押红黑,b = 1。
比如21点下注问题,假设总赌本10,000美元,玩家取胜的概率是51%,赔率1:1(实际胜率和赔率略有偏差,但相距不大),那么凯利公式给出的最佳赌注是:
$10000 * (1 * 0.51 - 0.49)/ 1 = $200
首先,公式中分子的bp - q 代表“赢面”,数学中叫“期望值”(expectation),凯利公式指出:正期望值的游戏才可以下注,这是一切赌戏和投资最基本的道理,也就是前面讲的“没有把握,决不下注”。
其次,赢面还要除以“b”才是投注资金比例。 也就是说赢面相同的情况下,赔率越小越可以多押注。这一点不容易直观理解,我们用个例子来说明。 下面三个正期望值的游戏例子:
1. “小博大”:胜率20%,赢了1赔5,输了全光。bp - q =5*20% - 80% = 20%
2. “中博中”:胜率60%,1赔1。bp - q = 1*60% -40% = 20%
3. “大博小”:胜率80%,1赔0.5。bp - q = 0.5*80% - 20% = 20%